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Early diagnosis and effective monitoring of diabetic retinopathy and glaucoma are essential for preventing 

vision loss and improving patient outcomes. These conditions, if detected early, can be managed effectively, 

reducing the burden on healthcare systems and improving quality of life for patients. This study presents 

the development of a user-friendly software interface designed to assist healthcare professionals in 
diagnosing these conditions more efficiently. We developed a custom 11-layer Convolutional Neural 

Network (CNN) architecture, beginning with a rescaling layer and incorporating data augmentation 

techniques. The primary architecture consists of three convolutional layers containing 16, 32, and 64 filters, 
respectively, each followed by max pooling layers.  A dropout layer with a 0.7 rate was incorporated to 

reduce the risk of overfitting. The network also features a flattening layer, a dense layer with 128 neurons 

for feature extraction, and an output layer tailored to the number of classes. For glaucoma detection, a 
specialized preprocessing step focusing on the optic disc reduced validation loss by approximately 20%. 

Additionally, a manual zooming feature was developed to enhance diagnostic accuracy in complex 

glaucoma cases. The algorithms for diabetic retinopathy were meticulously designed to identify and 
highlight pathological areas, such as edema and hemorrhage. This approach facilitates precise visualization 

of vascular structures and significantly enhances the model's capability to provide accurate and timely 

diagnoses. The architecture that emerged upon conclusion of the study demonstrated an accuracy of 98% 
for diabetic retinopathy and 85% for glaucoma.  This study highlights the potential of advanced deep 

learning combined with practical tools to improve diagnostics, offering clinicians a reliable system to 
enhance patient outcomes. 
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Diyabetik retinopati ve glokomun erken teşhisi ve etkili yönetimi, görme kaybının önlenmesi ve hasta 

sonuçlarının iyileştirilmesi için çok önemlidir. Bu rahatsızlıklar erken teşhis edildikleri takdirde etkili bir 

şekilde yönetilebilir, sağlık sistemlerinin yükü azaltılabilir ve hastaların yaşam kalitesi iyileştirilebilir. Bu 
çalışma, sağlık profesyonellerine bu hastalıkların teşhisinde daha verimli destek sağlamak üzere geliştirilen 

kullanıcı dostu bir yazılım arayüzünü tanıtmaktadır. Çalışmada, 11 katmanlı özel bir Konvolüsyonel Sinir 

Ağı (KSA) mimarisi tasarlanmıştır; bu yapı, bir yeniden ölçekleme katmanıyla başlayarak veri artırma 
tekniklerini içermektedir. Temel yapı, sırasıyla 16, 32 ve 64 filtre içeren üç konvolüsyon katmanı ve bunları 

takip eden maksimum havuzlama katmanlarından oluşurken, aşırı öğrenmeyi önlemek için %0.7 oranında 

bir dropout katmanı eklenmiştir. Ayrıca ağda, özellik çıkarımı için 128 nöronlu bir yoğun katman ve sınıf 
sayısına göre uyarlanmış bir çıktı katmanı da bulunmaktadır. Glokom tespiti için optik disk üzerine 

odaklanan özel bir ön işleme adımı doğrulama kaybını yaklaşık %20 oranında azaltmış, karmaşık glokom 

vakalarında tanısal doğruluğu artırmak için manuel bir yakınlaştırma özelliği geliştirilmiştir. Diabetik 
retinopati için ise, ödem ve kanama gibi patolojik alanları tanımlayıp vurgulayan özel algoritmalar 

tasarlanmış; böylece damar yapılarının hassas bir şekilde görselleştirilmesi sağlanarak modelin doğru ve 

zamanında teşhis sağlama kapasitesi önemli ölçüde artırılmıştır. Sonuç olarak ortaya çıkan mimari, diabetik 
retinopati için %98, glokom için ise %85 doğruluk oranına ulaşmıştır.  Bu çalışma, tanılamayı iyileştirmek 

için pratik araçlarla bir araya getirilen gelişmiş derin öğrenmenin potansiyelini vurgulamakta ve 
klinisyenlere hasta sonuçlarını iyileştirmek için güvenilir bir sistem sunmaktadır. 
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INTRODUCTION 

Diabetic retinopathy and glaucoma are common ocular conditions with significant implications 

for vision. Diabetic retinopathy is a consequence of prolonged hyperglycemia, which results in damage 

to the retina in individuals with diabetes. Glaucoma, on the other hand, involves the gradual degeneration 

of the optic nerve, leading to a progressive loss of visual field. This article discusses the core 

characteristics of these diseases and investigates the capability of Convolutional Neural Networks 

(CNNs) in their diagnostic processes, aiming to improve detection and management through advanced 

image analysis. 

Diabetic Retinopathy Complication 

Diabetes is an endocrine disorder that disrupts glucose metabolism. Under normal physiological 

conditions, beta cells within the pancreatic islets of Langerhans secrete insulin to regulate glucose levels. 

Insulin aids in glucose absorption by peripheral tissues and encourages glycogen production in the liver, 

helping to keep blood glucose levels within a stable range (American Diabetes Association, 2020a; 

American Diabetes Association, 2020b). While diabetes encompasses several types, focusing on type 1 

and type 2 diabetes is particularly pertinent. These types are among the most prevalent causes of diabetic 

retinopathy and have been widely researched in literature. 

Type 1 diabetes is marked by the autoimmune attack on pancreatic beta cells, leading to the 

complete stop of insulin production. Consequently, individuals that have type 1 diabetes need external 

insulin therapy (International Diabetes Federation, 2019). Type 2 diabetes, by contrast, is often linked 

to insulin resistance and impaired function of beta cells. (Centers for Disease Control and Prevention, 

2021). Contributing factors include obesity, genetic predisposition, age, and lifestyle (Hu, 2011; 

McCarthy, 2004; Huang, 2011). Management of type 2 diabetes may involve lifestyle modifications, 

oral antidiabetic medications, and, if necessary, insulin injections (Centers for Disease Control and 

Prevention, 2021). 

Diabetes manifests with various symptoms, including persistent thirst, frequent urination, fatigue, 

blurred vision, and slow-healing wounds. If left uncontrolled, severe problems include cardiovascular 

disease, renal impairment, visual loss, neuropathy, and even limb amputation can result from diabetes. 

(American Diabetes Association, 2020; World Health Organization, 2016). 

Diabetic retinopathy is a prevalent and severe complication impacting vision in diabetic patients. 

Its pathophysiology involves metabolic disturbances induced by diabetes, which can lead to narrowing, 

leakage, and even hemorrhage of the retinal blood vessels (Cheung et al., 2016; Antonetti et al., 2006). 

Treatment strategies for diabetic retinopathy encompass comprehensive diabetes management, 

pharmacological therapies, laser treatment, and surgical interventions (Yoon et al., 2016). 

Approximately 40% of individuals with diabetes are expected to develop diabetic retinopathy, 

highlighting the significant risk of vision loss associated with this condition (Wong et al., 2016). The 

extent of diabetic retinopathy is strongly correlated with an increased risk of vision loss and blindness, 

especially in its advanced stages, underscoring the necessity for early detection and effective treatment 

(Wong et al., 2016; Yau et al., 2012). Globally, the prevalence of diabetic retinopathy aligns with the 

prevalence of diabetes but varies based on racial and geographical factors. Research indicates that 

Hispanic and Black Americans face higher risks compared to White Americans in the United States, 

with similar patterns observed in Asian populations (Wong et al., 2016; Zhang et al., 2010). 

Additionally, there are disparities in diabetic retinopathy prevalence between countries, with developed 

nations typically experiencing lower rates of blindness due to effective early diagnosis and treatment 

services. In contrast, developing countries, where diabetes prevalence is on the rise, tend to report higher 

rates of blindness (Cheung et al., 2010). 
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Diabetic retinopathy is primarily classified into two types: Proliferative Diabetic Retinopathy 

(PDR) and Non-Proliferative Diabetic Retinopathy (NPDR). NPDR indicates the initial stages of the 

condition, while PDR signifies its advanced stages (Yau et al., 2012). NPDR is additionally divided into 

moderate, mild, and severe stages, each characterized by increasing severity of microaneurysms, 

hemorrhages, exudates, and vascular abnormalities observed in fundus images. PDR involves 

neovascularization and minimal fibrous tissue proliferation in addition to the signs of NPDR (Cheung 

et al., 2010). Fundus imaging is commonly utilized to detect and evaluate signs of diabetic retinopathy, 

including microaneurysms, retinal hemorrhages, small vessel changes, and hemorrhagic exudates. 

Microaneurysms are indicative of early disease stages, while retinal hemorrhages and hemorrhagic 

exudates are frequently observed in advanced stages, potentially leading to significant vision 

impairment. Small vessel changes can be detected early, reflecting disease progression. These findings 

are crucial for diabetic retinopathy diagnosis and treatment using fundus imaging (Bressler et al., 2003; 

Wilkinson et al., 2003; Early Treatment Diabetic Retinopathy Study Research Group et al., 1991; Klein 

et al., 1984; Bresnick et al., 1984). 

Advancements in medical technology and healthcare services have markedly improved diabetic 

retinopathy diagnosis and treatment. In the early 1980s, awareness and understanding of diabetic 

retinopathy began to expand (Aiello, 2003). During this period, detection primarily relied on eye 

examinations and fundus imaging, with treatment options limited to managing advanced hemorrhages 

(Klein et al., 1980). The early 2000s saw a pivotal shift with the widespread adoption of digital imaging 

technology. Digital fundus cameras and retinal scanning devices facilitated earlier detection and 

monitoring of diabetic retinopathy (Hee et al., 1995). 

Glaucoma Complication 

Glaucoma is a prevalent ocular disease that can result in optic nerve damage and potential vision 

loss. It is often linked to increased intraocular pressure (IOP); however, certain forms of glaucoma may 

occur with normal IOP levels. Glaucoma is a leading cause of avoidable blindness worldwide and can 

manifest in a variety of clinical ways (Tham et al., 2014; Quigley et al., 2006). 

One of the common kinds of glaucoma, open-angle glaucoma generally progresses gradually. 

This condition is characterized by a dysfunction in the drainage of aqueous humor despite the absence 

of an obstruction in the eye's drainage channels, leading to increased intraocular pressure (Weinreb et 

al., 2014; Heijl et al., 2002). Angle-closure glaucoma, in contrast, is less common and typically presents 

abruptly with symptoms such as sudden eye pain, blurred vision, and redness. It is caused by the angle 

between the cornea and iris narrowing, leading to a complete blockage of the drainage channels (Foster 

et al., 2002). Several risk factors contribute to the development of glaucoma, including advanced age, 

genetic predisposition, elevated intraocular pressure, diabetes, hypertension, and myopia (Leske et al., 

1995; Tielsch et al., 1991). People who have a family history of glaucoma are especially at risk. 

Moreover, glaucoma is more common in certain ethnic groups, including African Americans, Asians, 

and Hispanics (Racette et al., 2003; Varma et al., 2004). Glaucoma often progresses asymptomatically, 

and vision loss may be subtle and go unnoticed until the disease has advanced significantly. 

Consequently, regular eye examinations are essential to detect glaucoma early. Diagnostic methods 

include tonometry (measurement of intraocular pressure), ophthalmoscopy (examination of the optic 

nerve), visual field tests, sophisticated imaging methods like OCT (Optical Coherence Tomography) 

(Kass et al., 2002; Schuman et al., 1995). 

The primary objective of glaucoma treatment is to lower intraocular pressure (IOP) through 

various methods. Pharmacological therapy involves the use of eye drops to manage IOP. Several classes 

of medications are available, including prostaglandin analogs, carbonic anhydrase inhibitors, alpha 
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agonists and beta-blockers (European Glaucoma Society, 2017; Heijl et al., 2002). In cases where 

medication is insufficient, surgical interventions such as laser trabeculoplasty, trabeculectomy, and the 

use of drainage implants are employed. These procedures aim to enhance the drainage of aqueous humor 

or reduce its production to achieve a reduction in intraocular pressure (Jay et al., 1988; Gedde et 

al., 2012). 

Key indicators of glaucoma visible in fundus images include thinning of the retinal nervous fiber 

layer (RNFL), alterations in the optic disc and transformations in the peripapillary region (Quigley et 

al., 2006; Weinreb et al., 2014). The optic disc is a critical area where glaucoma manifests most 

noticeably. Cupping of the optic disc, characterized by an increased cup-disc ratio, is commonly 

observed in glaucoma-affected eyes. As the disease progresses, the ratio between the central depression 

(cup) and the disc's edge enlarges, signifying a loss of optic nerve fibers (Heijl et al., 2002; Caprioli et 

al., 2011). Notching at the optic disc margin and displacement of vessels at the disc edge are also 

indicative of glaucoma (Jonas et al., 1999). 

Thinning of the RNFL is a significant diagnostic feature that can be detected even when glaucoma 

is only getting started. The RNFL, composed of nerve fibers forming the optic nerve, becomes thinner 

as these fibers are damaged. In fundus images, RNFL thinning is particularly evident around the optic 

disc. Advanced imaging techniques such as Optical Coherence Tomography (OCT) are utilized to 

measure RNFL thickness accurately and assess the progression of glaucoma (Schuman et al., 1995; 

Leung et al., 2010). Glaucoma can also lead to a variety of alterations in the peripapillary area 

surrounding the optic disc. Peripapillary atrophy, marked by thinning of the choroid and retinal pigment 

epithelium, is often more pronounced in glaucomatous eyes. In fundus images, peripapillary atrophy is 

represented as lighter areas surrounding the optic disc (Jonas et al., 1996; Hood et al., 2007). 

Diabetic Retinopathy Diagnosis using Fundus Images 

Diabetic retinopathy manifests several distinctive signs in fundus images, which are crucial for 

the management of the condition. These signs include microvascular changes, retinal vascular 

occlusions, vessel dilations (aneurysms), vessel leaks and exudates, dot hemorrhages, microaneurysms, 

and optic disc edema (Michaelides et al., 2007; Bandello et al., 2016; Yau et al., 2012). 

Microvascular changes: Diabetic retinopathy is characterized by microvascular alterations in 

retinal vessels. These changes often present as narrowing, dilation, twisting, or a spiral appearance in 

the vessels. Fundus images reveal these abnormalities as deviations from normal vessel appearance, 

with microvascular irregularities noted in specific retinal regions. 

Retinal vascular occlusions: Occlusions in retinal vessels can occur during diabetic retinopathy, 

disrupting normal blood flow. Such blockages lead to reduced blood supply in certain areas of the retina. 

In fundus images, these occlusions are visible as distinct blockages where the vessels appear widened, 

indicating compromised retinal nutrition. 

Vessel dilations (aneurysms): Diabetic retinopathy can cause abnormal dilations of retinal vessel 

walls due to weakening. These dilations, visible in fundus images, appear as swollen and irregularly 

shaped vessels. 

Vessel leaks and exudates: As the disease progresses, damage to retinal vessels can result in 

leakage. This leakage leads to fluid accumulation beneath the retina, appearing in fundus images as 

exudates. Exudates often manifest as yellowish spots or patches on the retina. 

These visual signs provide critical diagnostic information and are integral to the effective 

treatment of diabetic retinopathy (Michaelides et al., 2007; Bandello et al., 2016; Yau et al., 2012). 
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Diagnosis of Glaucoma in Fundus Images 

Glaucoma is a chronic eye condition marked by damage to the optic nerve, frequently linked to 

elevated intraocular pressure. Fundus imaging is a key tool for monitoring the progression of glaucoma. 

Optic nerve atrophy: Glaucoma can lead to degenerative changes at the optic nerve head, 

observable in fundus images such as pallor, cupping, and signs of optic disc atrophy. Optic nerve atrophy 

is frequently seen in the advanced stages of glaucoma and may indicate disease progression. 

Optic nerve head cupping: Glaucoma can cause a concave shape at the optic nerve. This condition 

is visualized in fundus images as a loss of the normal optic disc structure or a concave appearance of the 

optic nerve head. Cupping of the optical nerve head can reflect the severity of glaucoma progression 

and optic nerve damage. 

Retinal vascular changes: Glaucoma can induce alterations in retinal blood vessels. In fundus 

images, these changes may present as arteriolar narrowing, venous dilation, and twisting of retinal 

vessels. Such modifications can affect retinal circulation and indicate disease progression. 

These results are essential for glaucoma diagnosis and therapy since they show the disease's 

distinctive symptoms in fundus images. The signs observed in fundus images play an essential role in 

assessing disease progression and evaluating the response to treatment (Heijl et al., 2002; Johnson et al., 

2006; Werner et al., 2007). 

MATERIAL AND METHODS 

This section details the methodology of the research, outlining the materials used and presenting 

the structure and fundamental approach.  

Data Collection and Annotation 

Data for this study was gathered from public databases and several ophthalmology clinics. The 

initial collection consists of 1,000 fundus images spanning 39 categories, sourced by the Joint Shantou 

International Eye Center (JSIEC). These images are a subset of a more extensive collection containing 

209,494 fundus images, which were used for training, validation, and testing within our DL model (Cen 

et al., 2021). Additionally, a second collection features approximately 1,000 retinal images per category, 

including Normal, Diabetic Retinopathy, Cataract, and Glaucoma cases. These images were sourced 

from repositories such as IDRiD (Indian Diabetic Retinopathy Image Dataset), Ocular Recognition, and 

HRF (Doddi, n.d.). 

Copyright for these images is held by JSIEC. This collection will be employed to develop and 

evaluate ML algorithms designed for the early diagnosis and classification of eye diseases, including 

glaucoma and diabetic retinopathy. Healthy fundus images will serve as reference data to establish 

normative values and enhance model accuracy. The diversity and breadth of these collections enhance 

the model's ability to generalize and perform effectively across varied populations. This study aims to 

significantly advance the diagnosis and classification of glaucoma and diabetic retinopathy using fundus 

images. 

Figure 1  

The left column shows examples of fundus images from the dataset diagnosed as healthy, the middle 

column displays examples of fundus images diagnosed with diabetic retinopathy, and the right column 

presents examples of fundus images diagnosed with glaucoma. 
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The glaucoma category includes 891 images depicting structural changes such as an increased 

cup-disc ratio at the optic nerve head, neural retinal rim thinning, and peripapillary atrophy. The diabetic 

retinopathy category comprises 737 images displaying signs like hard exudates, soft exudates (cotton 

wool spots), microaneurysms, retinal hemorrhages, and neovascularization, representing various stages 

of the disease. The healthy fundus images total 916, sourced from individuals without any eye diseases, 

and are used for normative comparisons. 

Table 1  

The dataset distribution is illustrated in both percentage and numerical formats based on the categories 

of fundus images. 

Fundus Image Categories 
Evaluation Metrics 

Number of Images Percent 

Diabetic Retinopathy 737 28.96% 

Glaucoma 891 35.02% 

Healthy 916 36.02% 

Total 2557 100% 

Deep Learning Algorithm (CNN) 

Deep learning involves learning from large datasets through multi-layered artificial neural 

networks. These models excel in extracting features from data and learning complex relationships. The 

success of deep learning, particularly with structured data such as images and audio, is attributed to the 

models' ability to effectively learn complex data relationships when trained on extensive datasets with 

substantial computational power. CNNs are a type of DL model designed to work efficiently with image 

data. Each component is crucial for enabling the model to learn features from input data and make 

accurate inferences. 

Convolutional layers perform convolution operations on inputs, extracting feature maps through 

various filters. These layers identify basic features in images like textures, corners and edges, passing 

these features to subsequent layers to recognize more complex structures. Filters are trained to detect 

specific patterns or features, and the output of each filter generates a feature map representing particular 

aspects of the input image. Pooling layers reduce the dimensions of feature maps and decrease 

computational load. Max pooling is the most widely used pooling technique, in which the highest value 

within a defined area is chosen as the representative value for that region. Pooling enhances the model's 

robustness to spatial variations and reduces computational costs, thereby shortening the training time. 
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Fully connected layers execute final classification or regression tasks using flattened feature 

maps. Similar to layers in traditional artificial neural networks, fully connected layers establish 

connections between all input and output units. These layers integrate the features learned by the model 

to make final decisions, with the output layer typically generating probability values for specific classes. 

By integrating these components, CNNs learn hierarchical structures, from low-level features to high-

level, within images. This ability allows CNNs to excel in image classification and object detection 

tasks. The architecture of CNNs facilitates the understanding and interpretation of complex visual data 

through the careful arrangement and optimization of various layers. 

The following provides a comprehensive explanation of each layer within the model and its role 

in the overall architecture. The model begins with a Rescaling layer. This layer normalizes the pixel 

values of the input images to a range of 0 to 1. Normalization aids in accelerating the model's learning 

and producing more stable results. Following the Rescaling layer, a data augmentation layer is applied. 

Data augmentation entails implementing different transformations on the input images to enhance model 

generalization. In this model, augmentation techniques include horizontal and vertical flipping, as well 

as rotations up to 0.2 degrees. These techniques help mitigate overfitting, thereby improving its 

robustness and generalization capabilities. 

The model comprises three convolutional layers. The first convolutional layer employs 16 filters 

to extract low-level features from the image. The number of filters increases to 32 in the second 

convolutional layer and 64 in the third layer, allowing the model to capture more complex features. Each 

convolutional layer utilizes a 3x3 kernel and padding='same', which maintains of the input image’s 

spatial dimensions. The ReLU is applied in these layers to introduce non-linearity, enabling the to learn 

complex patterns. Subsequent to each convolutional layer is a max pooling layer. This layer decreases 

the spatial dimensions, to lower the computational load and emphasize the most crucial features. Max 

pooling picks the maximum value from each patch of the feature map, thus retaining the most prominent 

features while reducing dimensionality. This approach enhances the model's efficiency and reduces 

susceptibility to overfitting. After the third convolutional layer, dropout assists in preventing overfitting 

by ensuring that the model does not overly depend on any single neuron. It improves the model's 

generalization ability and performance on unseen data. The multi-dimensional outcome from the pooling 

and convolutional layers is subsequently transformed into a one-dimensional vector by the Flatten layer. 

The input for the following dense layers is this vector. Flattening is crucial for transitioning fully 

connected layers from convolutional layers, which perform the final classification. 

The first dense layer contains 128 neurons and utilizes the ReLU activation function to learn 

complex feature interactions. This layer enhances the model's classification capability by integrating 

features learned from previous layers. The second dense layer produces the model's final output and is 

correlated with the number of classes.  

The Methodology Section for Diabetic Retinopathy Detection 

Data augmentation approaches were used to enhance the effectiveness of models. The training 

dataset's variety is increased by data augmentation, thereby improving the model's generalization ability. 

This is particularly valuable when dealing with a restricted number of medical images, as it helps make 

the model more robust against various image variations. The data augmentation process was 

implemented using TensorFlow's Sequential API. This process involves applying random 

transformations to images within the training dataset. Techniques used in this study include horizontal 

and vertical flipping and random rotation. These transformations introduce variations in image 

orientations, which improves the model's ability to learn from symmetric changes. Additionally, images 

were randomly rotated up to 0.2 radians (approximately 11.46 degrees), improving the model's 
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resistance to rotational fluctuations and enabling it to adjust to various viewing angles. 

The data augmentation layer was incorporated immediately following the model's input layer. 

This setup ensures that during training, each image undergoes a variety of random transformations, as 

illustrated in Figure 2. This method guarantees that only during training will the model be exposed to 

enhanced data, while its performance is assessed with original, unmodified data during validation and 

testing. This is essential for accurately evaluating the model's performance with real-world data. 

In conclusion, the application of data augmentation techniques has significantly improved the 

model's ability to learn changes made to the training dataset and enhanced its generalization capabilities. 

This advancement is particularly beneficial when working with limited medical imaging data, as it 

allows the model to more accurately recognize diverse disease symptoms and achieve higher accuracy 

rates in diabetic retinopathy diagnosis. 

Figure 2 

The sample outputs of the data augmentation processes are presented. The numbered images 

correspond to the following: the original output is labeled as 1, the rotated version as 2, the translated 

version as 3, the horizontally flipped version as 4, the vertically flipped version as 5, and the version 

flipped both horizontally and vertically as 6. 

 

“The Contrast Limited Adaptive Histogram Equalization (CLAHE)” used for further improve the 

contrast of retinal images to identification. A more sophisticated form of conventional histogram 

equalization, CLAHE offers localized contrast enhancement, as illustrated in Figure 3. Unlike traditional 

histogram equalization, which enhances overall contrast by stretching the histogram of the entire image, 

Through the division of the image into tiny cells, CLAHE enhances local contrast (or tiles) and applying 

histogram equalization separately to each cell. This method enhances fine details and mitigates noise 

associated with excessive contrast enhancement. 

In this study, the CLAHE parameters were meticulously configured with a clipLimit of 2.0 and a 

tileGridSize of 8x8. The clipLimit was set to prevent excessive contrast enhancement and mitigate noise, 

while the tileGridSize ensured the image was divided into smaller cells, facilitating effective local 

histogram equalization. These parameters were deliberately selected to achieve optimal contrast 

enhancement while maintaining noise control. 
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Figure 3 

The original photos (left), and the outcomes following the application of histogram equalization (right) 

 

A color space modification was first carried out on the photos before applying CLAHE.  Retina 

images were converted from the BGR (blue-green-red) color space to the LAB (Lightness-a-b) color 

space. This transformation allows the contrast enhancement process to be applied solely to the lightness 

component (L), preserving color information and contributing to improved image quality. 

In the LAB color space, the image was decomposed into its L, a, and b components, with CLAHE 

applied exclusively to the lightness component. Enhancing the lightness component with CLAHE 

improves local contrast, making features such as blood vessels, microaneurysms, and other pathological 

findings in retinal images more prominent. Following the enhancement, the adjusted lightness 

component was combined with the original color components (a and b), and the image was reconstructed 

in the LAB color space before being converted back to the BGR color space. This process effectively 

increased the contrast of all retinal images, making them more suitable for analysis. 

In conclusion, applying the CLAHE method significantly enhanced the contrast of retinal images 

used for diabetic retinopathy diagnosis, allowing for clearer visualization of pathological findings. This 

improvement facilitates more accurate and reliable outcomes in clinical diagnosis and treatment. 

Furthermore, the implementation of CLAHE enhances the performance, contributing to the development 

of more effective classification and diagnostic models. 

The performance of CNN models used in diabetic retinopathy (DR) diagnosis is dependent on 

proper and consistent preprocessing of input data. Because of the different resolutions of the images in 

the dataset utilized in this study, it was necessary to resize all images to a uniform dimension. 

Consequently, all fundus images fed into the CNN model were resized to the smallest image size of 216 

x 216 pixels. 

The Methodology Section for Diabetic Retinopathy Detection 

In this part of the study, we developed an image processing pipeline to detect yellow lesions, 

indicative of exudates, in fundus. Hard exudates and soft exudates are lipid deposits appearing as yellow 

spots on the retina, often associated with diabetic retinopathy. Leaking from abnormal blood vessels in 

the retina, a common diabetic complication, causes these deposits. 

Initially, the original fundus image is transformed into a heatmap to enhance visual contrast, 
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making critical features more distinguishable, as illustrated in Figure 4. CLAHE is then applied with 

particular focus on the green channel, which is vital in fundus imaging. 

Figure 4 

The fundus image with the color heatmap is shown. 

 

Subsequently, specific color boundaries for yellow and red hues are defined to create masks that 

isolate these regions within the heatmap. These masked regions are set to black, and the modified 

heatmap is then converted into a binary image. Contours are detected in this binary image, and an image 

highlighting these contours in green is generated. These contours are overlaid onto the original fundus 

image to emphasize the regions of interest. 

Further processing involves converting the CLAHE-enhanced image to grayscale and binarizing 

it. The binary image, which highlights green regions, is then converted back to a colored image and 

applied to the original image. A transparency effect is applied to the green mask, blending it seamlessly 

with the original image (Figure 5). 

Figure 5 

The image shows a fundus image with highlighted exudates. 

 

The final processed image displays the highlighted regions, indicating yellow lesions that are 

crucial for diagnosing diabetic retinopathy. This technique improves fundus image detection and 

visualization of both soft and hard exudates, providing a powerful instrument for analyzing medical 

images in relation to diabetic retinopathy. Healthcare providers can more precisely diagnose and track 

the development of diabetic retinopathy in patients by detecting these lipid deposits. 
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The Methodology Section for Glaucoma Detection  

In this section of the study, the effectiveness and application methods of algorithms used for 

glaucoma detection are thoroughly examined. These algorithms, developed with machine learning 

techniques and advanced image processing, analyze various biometric data points. Key data points 

include intraocular pressure, the retinal layers thickness and the anatomical characteristics of the nerve 

head, both of which are essential in determining the risk of glaucoma. 

To enhance the accuracy of glaucoma diagnosis, this study emphasizes a detailed approach to 

processing eye images, with particular attention to zooming into specific regions of interest. The process 

begins with the loading and visualization of a high-resolution color image of the eye. This initial step 

gives a thorough rundown of the structure of the eye by examining the raw data without any 

preprocessing. Upon loading the color image, it is converted into grayscale (Figure 6). This conversion 

eliminates color information, which may be redundant in medical image analysis, leaving only the 

brightness information. Simplifying the image to grayscale facilitates a more focused examination of 

structural details by improving the contrast between different components, thus making it easier to 

identify subtle features.  

Subsequent to the grayscale conversion, a median blur filter is applied to the image, achieving the 

result depicted in Figure 6. This filter reduces noise that could obscure important details and smooths 

the edges within the image, leading to a more uniform appearance. The reduction of unwanted details 

through this process enhances the accuracy of the subsequent analysis, ensuring that key features are 

more clearly visible.  

Following the application of the median blur filter, the next step involves detecting circular 

structures within the eye using the Hough Circle Transform. This technique is effective for identifying 

prominent circular features, such as the optic disc, as shown in Figure 6.  

The algorithm’s capability to detect these circular structures is crucial for the precise localization 

and analysis of critical areas. Among the detected circles, the algorithm identifies the one with the 

brightest center and marks it on the raw image (Figure 6). This circle is of particular significance as the 

brightest center typically corresponds to essential structures like the optic disc.  

Marking this circle on the original color image ensures that both its center and circumference are 

distinctly visible. This marking process is integral for further analysis, highlighting regions of interest 

necessary for diagnosing glaucoma. Enhancing the visibility of these critical structures ensures that the 

subsequent analysis is both accurate and reliable. This detailed marking assists in the precision of the 

nerve head, which is essential for evaluating the progression and severity of glaucoma. 

Figure 6 

The original color image is displayed first (left-up), grayscale counterpart(left-down), the third image 

in the top right depicts the grayscale image with a median blur filter applied, and the bottom right image 

highlights the circle detected with the Hough Circle Transform method, emphasizing structures like the 

optic disc. 
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In the final stage, a specific area around the marked circle is enlarged. This process involves focusing 

on the center of the selected circle and zooming into the surrounding area. Enlarging this region allows 

for more detailed analysis and better detection of potential abnormalities. The magnified area is 

subsequently visualized for additional analysis, as illustrated in Figure 7. 

Figure 7 

Optic disc detection algorithm outputs in images with glaucoma diagnosis. 

 

These operations are performed to process and analyze the image in a manner that provides 
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enhanced data for machine learning models. This process aims to facilitate glaucoma diagnosis and 

improve accuracy by obtaining high-quality images with distinct features. Consequently, eye disorders 

such as glaucoma can be diagnosed earlier and with greater precision. 

Approach to Optic Disc Evaluation 

Due to high noise levels in the processed data, optic disc images that cannot be detected 

automatically are manually marked by the user. The code scans image files in the specified directory 

and allows the user to manually intervene with each image. If the images exceed a specified size, they 

are resized. Users can define a cropping area by drawing a square on the image with the mouse. The 

square's size can be dynamically adjusted using the mouse wheel. The chosen area is cropped and saved 

to a specified directory when the left mouse is clicked. During this cropping process, the directory for 

saving the cropped image is automatically created. The user can exit the process by pressing the "Esc" 

key or closing the image window. An image is skipped and nothing is done if it has already been cropped. 

The code also checks for unreadable or faulty files and reports any errors encountered during processing. 

In conclusion, this application code directory supports the manual inspection of glaucoma-related 

images, enabling users to select and crop specific areas for further analysis. 

EVALUATION METRICS 

Using fundus images of individuals with glaucoma and diabetic retinopathy, we methodically 

assessed the efficacy of many machine learning approaches. The critical role of pre-processing in 

enhancing model performance was rigorously analyzed using comparative figures and tables, with a 

focus on learning curves, confusion matrices, and classification reports. 

Figure 8 

The figure compares learning curves for CNN models trained on original and contrast-enhanced fundus 

images for diabetic retinopathy detection. 

 

Learning curves were utilized to plot the model's performance, typically measured by error rate 

or accuracy, against the number of training instances or the duration of training. These curves show how 

the predicted accuracy of the model increases with the amount of data it is exposed to. The training 

curve demonstrates the model's performance on the training data, often showing high accuracy initially, 
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with a potential plateau as additional data is introduced. In contrast, the validation/test curve represents 

the performance of model’s on never seen data, providing insights into its generalization capabilities. 

This curve typically starts with a higher error rate, which decreases as more training data is incorporated, 

until it may plateau or diverge, indicating potential overfitting or underfitting. 

Learning curves of the CNN model trained with contrast-adjusted fundus images (Figure 8). The 

training and validation accuracy curves are closely aligned, with only minor deviations, and remain 

stable at certain points. This alignment indicates that the model performs similarly on both the validation 

and training, reflecting strong generalization capabilities. The close match between training and 

validation accuracies suggests that the model has effectively avoided overfitting and has not excessively 

adapted to the training data. The stability of performance at a certain level signifies that the learning 

process has been successfully completed and maintained. This consistent performance highlights the 

model’s robustness and its ability to generalize well across different datasets. 

Moreover, the convergence of the training and validation curves at a low error rate indicates that 

the model is operating effectively. This convergence shows how well the model generalizes to new, 

unknown data and how well it is learned from the training set. Conversely, if the training error is low 

while the validation error remains high, it would indicate overfitting, suggesting that the on training 

data, the model works well, but on fresh data, it performs poorly. Conversely, underfitting is observed 

when both curves exhibit high error rates, indicating that the model is too simplistic to detect the deeper 

structure in the data. This distinction is crucial for understanding whether the model requires further 

refinement or if it is appropriately tuned for the given task. 

Additionally, contrast adjustments have resulted in noticeable changes in accuracy deviations. 

When compared to the curves shown in Figure 8, these changes illustrate how varying contrast levels 

affect the model's performance. 

Figure 9 

The confusion matrix for diabetic retinopathy shows TP, FP, TN, and FN. 

 

The confusion matrix, a fundamental tool for evaluating classification algorithms, compares the 

model’s predicted labels with the actual ground truth labels from the dataset. This comparison 

summarizes the model's accuracy in predicting different classes. From the confusion matrix, several 

critical metrics are derived, including the classification report, which comprises precision, recall, and 

the F1 score. These metrics can be calculated as shown below. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 2 × (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) 

These metrics, as seen in Figure 9, demonstrate that the model provides high accuracy and 

effectiveness, achieving successful performance for both classes. Using the components of this matrix, 

the performance metrics are calculated as follows: The accuracy of the model is 97.5%, indicating that 

the model has classified both healthy images and DR cases with high accuracy and demonstrates a strong 

overall performance. The precision for healthy images is 98.7%, meaning that 98.7% of the cases 

predicted as healthy are indeed healthy, reflecting a very low FN rate. The recall for healthy images is 

98.6%, which means that 98.6% of actual healthy cases have been correctly identified by the model, 

demonstrating a very low FN rate. The F1 score for healthy images is 98.7%, indicating that the model's 

predictions for healthy images are well-balanced in terms of both precision and recall. For DR, the 

precision is 98.9%, showing that 98.9% of the cases predicted as DR are indeed DR, with a very low FP 

rate. The recall for DR is 98.6%, which means that 98.6% of actual DR cases have been correctly 

predicted, with a low false negative rate. The F1 score for DR is 98.7%, demonstrating that DR 

predictions are robust and balanced both precision and recall. Where TP is correctly identified DR cases, 

and FP is cases incorrectly identified as DR. 

Table 2  

Table showing the classification performance metrics for diabetic retinopathy and healthy images. 

Classification Metrics DR Normal Accuracy 

Precision 0.98 0.99 - 

Recall 0.99 0.98 - 

F1 Score 0.98 0.98 - 

Accuracy - - 0.98 

Table 2 presents classification performance metrics for DR and normal images, including 

precision, recall, F1-score, and overall accuracy. 

In this study, a series of sequential preprocessing steps were applied prior to model training. 

Techniques such as contrast adjustment, noise reduction, sharpening, and various other methods were 

employed to enhance image quality. However, it was found that among these steps, contrast adjustment 

yielded the most significant performance improvement. The other preprocessing steps did not provide 

the expected contribution and, in some cases, led to undesirable outcomes such as overfitting in the 

model.  

Upon examining the learning curves, confusion matrix, and classification report, it was observed 

that contrast-enhanced images demonstrated superior generalization ability. This model achieved a 10% 

higher recall score and a 4% greater accuracy rate in the classification of diabetic retinopathy. 

Consequently, it was determined that among the various preprocessing steps applied, contrast 

adjustment played a particularly crucial role in enhancing the model’s performance. 

Given that the optic disc plays a crucial role in glaucoma detection, we focused exclusively on 

analyzing the optic disc region within the images for this study. The graphs and tables below 

demonstrate the improved results of this targeted approach. Learning curves of the CNN model for 

glaucoma detection (Figure 10), comparing two approaches: training with the original fundus images 
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versus training with a focus on the optic disc. The upper curve represents the model trained on the 

original fundus images, while the lower curve shows the model trained with an emphasis on the optic 

disc. The upper graph demonstrates suboptimal performance, with noticeable deviations and instability 

in accuracy. In contrast, the lower graph, which focuses on the optic disc, reveals significantly improved 

performance.  

The training and validation curves in the lower graph are closely aligned with minimal deviations, 

indicating greater stability and accuracy. This suggests that the model, when trained with a focus on the 

optic disc, generalizes better and detects glaucoma more effectively. The enhanced performance in the 

lower graph underscores the benefit of focusing on the optic disc, which contributes to a more reliable 

and robust model for glaucoma detection. 

Figure 10 

The figure presents two learning curves from CNN models for glaucoma detection. The upper curve 

depicts the model trained on original fundus images, while the lower curve illustrates the model trained 

with a close-up focus on the optic disc. This comparison highlights the impact of focusing on the optic 

disc on model performance. 

 

These metrics, as shown in Figure 11, highlight the model's accuracy and effectiveness in 

detecting glaucoma. The model’s accuracy is 83.6%. The precision for glaucoma is 83.4%, indicating 

that 83.4% of the cases predicted as glaucoma are indeed glaucoma, which reflects a relatively low FP. 

The recall for glaucoma is 86.2%, meaning that 86.2% of actual glaucoma cases have been correctly 

identified by the model, demonstrating a relatively low false negative rate. The F1 score for glaucoma 

is 84.8%, suggesting that the model’s predictions for glaucoma are well-balanced. For normal cases, the 

precision is 82.6%, showing that 82.6% of the cases predicted as normal are indeed normal, with a low 

false positive rate. The recall for normal cases is 83.8%, meaning that 83.8% of actual normal cases 

have been correctly predicted, reflecting a low FN. The F1 score for normal cases is 83.2%, indicating 

that predictions for normal cases are robust and balanced in terms of precision and recall. 

Figure 11 

The confusion matrix for glaucoma displays true positives, false positives, true negatives, and false 

negatives. 



Fivezero 
    

 

38 

 

Table 3   

Table showing the classification performance metrics for diabetic retinopathy and healthy images. 

Classification Metrics Glaucoma Normal Accuracy 

Precision 0.83 0.87 - 

Recall 0.87 0.83 - 

F1 Score 0.85 0.85 - 

Accuracy - - 0.84 

Table 3 summarizes the classification performance metrics for glaucoma and normal images. The 

metrics include precision, recall, F1 score, and overall accuracy, offering a concise overview of the 

model's performance for both classes. 

RESULTS AND DISCUSSIONS 

The results demonstrate that focusing on the optic disc in fundus images of glaucoma patients 

significantly improved the machine learning model's accuracy. This targeted approach enabled the 

model to effectively identify the distinctive features of glaucoma within the optic disc, facilitating early 

detection and diagnosis with high precision. Similarly, preprocessing techniques applied to fundus 

images of diabetic retinopathy patients, such as image enhancement, noise reduction, and normalization, 

enhanced the machine learning models' accuracy. These techniques successfully highlighted key 

pathological features associated with diabetic retinopathy, thus improving the model’s overall 

performance. 

Notably, compared to other models, the architecture used in this work was trained using a lot less 

data. This suggests that data augmentation could further enhance the model's efficiency and accuracy. 

In order to investigate possible enhancements in model performance, future research might concentrate 

on growing the dataset. 

Figure 12 

The user interface for eye disease detection, which includes tools for uploading fundus images and 

viewing diagnosis results, is shown. 
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The primary objective of this study was to provide a user-friendly interface for early detection 

and diagnosis of eye diseases. As shown in Figure 12, the interface facilitates ease of use and 

accessibility for users, aiming to simplify the diagnostic process. The findings underscore the value of 

combining appropriate preprocessing techniques with a focus on critical image regions, such as the optic 

disc, to substantially enhance the effectiveness of machine learning methods in ophthalmology. 

In conclusion, the study highlights the importance of precise image processing and targeted 

analysis in developing robust machine learning models for eye disease detection. These advancements 

can significantly benefit early diagnosis and management, ultimately improving patient outcomes. 



Fivezero 
    

 

40 

Ethical Approval 

It is hereby declared that ethical guidelines have been followed throughout the preparation of this 

study. 

Author Contributions 

Research Design Author 1 (%30) - Author 2 (%30) - Author 3 (%40) 

Data Collection Author 1 (%10) - Author 2 (%45) - Author 3 (%45) 

Research - Data Analysis - Validation Author 1 (%20) - Author 2 (%40) - Author 3 (%40) 

Writing the Article Author 1 (%30) - Author 2 (%40) - Author 3 (%30) 

Revision and Improvement of the Text Author 1 (%30) - Author 2 (%40) - Author 3 (%30) 

Funding 

There was no financial support for this study. 

Conflict of Interest 

The authors declare that there is no conflict of interest. 

Sustainable Development Goals (SDGs) 

Sustainable Development Goal: 3 Good Health and Well-being 

3.d Strengthen the capacity of all countries, particularly developing countries, for early warning, 

risk reduction, and management of national and global health risks.  



Diabetic Retinopathy and Glaucoma Diagnosis with CNN-Based Approach and User Interface for 

Morphological Analysis of Risky Regions in Fundus Images 
    

 
 

41 

REFERENCES 

Aiello, L. P. (2003). Angiogenesis and diabetic retinopathy. The American Journal of Ophthalmology, 

136(1), 122–135. 

American Diabetes Association. (2020a). Diagnosis and classification of diabetes mellitus. Diabetes 

Care, 43(Suppl. 1), S14–S31. 

American Diabetes Association. (2020b). Standards of medical care in diabetes. Diabetes Care, 

43(Suppl. 1), S1–S204. 

Antonetti, D. A., Barber, A. J., Bronson, S. K., Freeman, W. M., Gardner, T. W., Jefferson, L. S., ... & 

Bronson, S. K. (2006). Diabetic retinopathy: Seeing beyond glucose-induced microvascular 

disease. Diabetes, 55(9), 2401–2411. 

Bandello, M., et al. (2016). Diabetic retinopathy. The Lancet, 388(10050), 1455–1466. 

Bresnick, G. H., Condit, R., Syrjala, S., Palta, M., Groo, A., & Korth, K. (1984). Abnormalities of the 

foveal avascular zone in diabetic retinopathy. Archives of Ophthalmology, 102(9), 1286–1293. 

Bressler, N. M., Edwards, A. R., Antoszyk, A. N., Beck, R. W., Browning, D. J., Ciardella, A. P., & 

Ip, M. S. (2003). Retinal thickness on stratus optical coherence tomography in people with 

diabetes and minimal or no diabetic retinopathy. American Journal of Ophthalmology, 135(5), 

704–712. 

Caprioli, J., & Varma, R. (2011). Intraocular pressure: Modulation as treatment for glaucoma. 

American Journal of Ophthalmology, 152(3), 340–344. 

Cen, L. P., Ji, J., Lin, J. W., et al. (2021). Automatic detection of 39 fundus diseases and conditions in 

retinal photographs using deep neural networks. Nature Communications, 12, 4828. 

Centers for Disease Control and Prevention. (2021). National diabetes statistics report, 2020. Atlanta, 

GA: Author. 

Cheung, N., & Wong, T. Y. (2016). Diabetic retinopathy and systemic vascular complications. 

Progress in Retinal and Eye Research, 48, 8–39. 

Cheung, N., Mitchell, P., & Wong, T. Y. (2010). Diabetic retinopathy. The Lancet, 376(9735), 124–

136. 

Doddi, G. V. (n.d.). Eye diseases classification. Kaggle. 

https://www.kaggle.com/datasets/gunavenkatdoddi/eye-diseases-classification 

Early Treatment Diabetic Retinopathy Study Research Group. (1991). Grading diabetic retinopathy 

from stereoscopic color fundus photographs—An extension of the modified Airlie House 

classification. ETDRS report number 10. Ophthalmology, 98(5 Suppl), 786–806. 

European Glaucoma Society. (2017). Terminology and guidelines for glaucoma (4th ed.). Savona, 

Italy: PubliComm. 

Foster, P. J., & Buhrmann, R. (2002). The definition and classification of glaucoma in prevalence 

surveys. British Journal of Ophthalmology, 86(2), 238–242. 

Gedde, S. J., Schiffman, J. C., Feuer, W. J., Herndon, L. W., Brandt, J. D., Budenz, D. L., ... & Tube 

Versus Trabeculectomy Study Group. (2012). Treatment outcomes. 

Hee, M. R., Puliafito, C. A., Wong, C., Duker, J. S., Reichel, E., Schuman, J. S., & Fujimoto, J. G. 

(1995). Quantitative assessment of macular edema with optical coherence tomography. Archives 



Fivezero 
    

 

42 

of Ophthalmology, 113(8), 1019–1029. 

Heijl, A., Leske, M. C., Bengtsson, B., Hyman, L., Bengtsson, B., & Hussein, M. (2002). Reduction of 

intraocular pressure and glaucoma progression: Results from the Early Manifest Glaucoma 

Trial. Archives of Ophthalmology, 120(10), 1268–1279. 

Hood, D. C., & Kardon, R. H. (2007). A framework for comparing structural and functional measures 

of glaucomatous damage. Progress in Retinal and Eye Research, 26(6), 688–710. 

Hu, F. B. (2011). Globalization of diabetes: The role of diet, lifestyle, and genes. Diabetes Care, 34(6), 

1249–1257. 

Huang, E. S. (2011). The natural history of type 2 diabetes: Validating a prognostic model for diabetes 

progression. Diabetes Care, 34(9), 1915–1916. 

International Diabetes Federation. (2019). IDF diabetes atlas (9th ed.). Brussels, Belgium: Author. 

Jay, J. L., & Murray, S. B. (1988). Early trabeculectomy versus conventional management in primary 

open angle glaucoma. British Journal of Ophthalmology, 72(12), 881–889. 

Johnson, C. A., Sample, P. A., Zangwill, L. M., Vasile, C., Cioffi, G. A., Liebmann, J. R., ... & 

Weinreb, R. N. (2006). The Early Manifest Glaucoma Trial: Overview and baseline 

characteristics of enrolled patients. Ophthalmology, 113(7), 1147–1153. 

Jonas, J. B., Budde, W. M., & Panda-Jonas, S. (1999). Ophthalmoscopic evaluation of the optic nerve 

head. Survey of Ophthalmology, 43(4), 293–320. 

Jonas, J. B., & Dichtl, A. (1996). Evaluation of the retinal nerve fiber layer. Survey of Ophthalmology, 

40(5), 369–378. 

Kass, M. A., Heuer, D. K., Higginbotham, E. J., Johnson, C. A., Keltner, J. L., Miller, J. P., ... & 

Gordon, M. O. (2002). The Ocular Hypertension Treatment Study: A randomized trial 

determines that topical ocular hypotensive medication delays or prevents the onset of primary 

open-angle glaucoma. Archives of Ophthalmology, 120(6), 701–713. 

Klein, R., Klein, B. E., Moss, S. E., Davis, M. D., & DeMets, D. L. (1984). The Wisconsin 

epidemiologic study of diabetic retinopathy. III. Prevalence and risk of diabetic retinopathy 

when age at diagnosis is 30 or more years. Archives of Ophthalmology, 102(4), 527–532. 

Klein, R., & Klein, B. E. (1980). Diabetic retinopathy. Annual Review of Medicine, 31(1), 219–236. 

Leung, C. K., Cheung, C. Y., Weinreb, R. N., Qiu, Q., Liu, S., Li, H., ... & Lam, D. S. (2010). Retinal 

nerve fiber layer imaging with spectral-domain optical coherence tomography: A prospective 

analysis of age-related loss. Ophthalmology, 117(4), 732–738. 

Leske, M. C., Connell, A. M., Wu, S. Y., Hyman, L. G., & Schachat, A. P. (1995). Risk factors for 

open-angle glaucoma. The Barbados Eye Study. Archives of Ophthalmology, 113(7), 918–924. 

McCarthy, M. I. (2004). Genetic contribution to type 2 diabetes: Genomic and epidemiologic 

perspectives. American Journal of Epidemiology, 159(12), 1077–1089. 

Michaelides, M. B., et al. (2007). Diabetic retinopathy: Pathogenesis, clinical grading, management 

and future developments. Diabetic Medicine, 24(2), 141–150. 

Quigley, H. A., & Broman, A. T. (2006). The number of people with glaucoma worldwide in 2010 and 

2020. British Journal of Ophthalmology, 90(3), 262–267. 

 



Diabetic Retinopathy and Glaucoma Diagnosis with CNN-Based Approach and User Interface for 

Morphological Analysis of Risky Regions in Fundus Images 
    

 
 

43 

Racette, L., Wilson, M. R., Zangwill, L. M., Weinreb, R. N., & Sample, P. A. (2003). Primary open-

angle glaucoma in blacks: A review. Survey of Ophthalmology, 48(3), 295–313. 

Schuman, J. S., Hee, M. R., Puliafito, C. A., Wong, C., Pedut-Kloizman, T., Lin, C. P., ... & Fujimoto, 

J. G. (1995). Quantification of nerve fiber layer thickness in normal and glaucomatous eyes 

using optical coherence tomography: A pilot study. Archives of Ophthalmology, 113(5), 586–

596. 

Tham, Y. C., Li, X., Wong, T. Y., Quigley, H. A., Aung, T., & Cheng, C. Y. (2014). Global 

prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review 

and meta-analysis. Ophthalmology, 121(11), 2081–2090. 

Tielsch, J. M., Katz, J., Singh, K., Quigley, H. A., Gottsch, J. D., Javitt, J., & Sommer, A. (1991). A 

population-based evaluation of glaucoma screening: The Baltimore Eye Survey. American 

Journal of Epidemiology, 134(10), 1102–1110. 

Varma, R., Ying-Lai, M., Francis, B. A., Nguyen, B. B., Deneen, J., Wilson, M. R., & Azen, S. P. 

(2004). Prevalence of open-angle glaucoma and ocular hypertension in Latinos: The Los 

Angeles Latino Eye Study. Ophthalmology, 111(8), 1439–1448. 

Weinreb, R. N., Aung, T., & Medeiros, F. A. (2014). The pathophysiology and treatment of glaucoma: 

A review. JAMA, 311(18), 1901–1911. 

Werner, G. K., Sample, P. A., Zangwill, L. M., Vasile, C., Cioffi, G. A., Liebmann, J. R., ... & 

Weinreb, R. N. (2007). Frequency doubling technology perimetry for detection of visual field 

progression in glaucoma: A meta-analysis. Journal of Glaucoma, 16(2), 117–124. 

Wilkinson, C. P., Ferris, F. L. III, Klein, R. E., et al. (2003). Proposed international clinical diabetic 

retinopathy and diabetic macular edema disease severity scales. Ophthalmology, 110(9), 1677–

1682. https://doi.org/10.1016/s0161-6420(03)00475-5 

Wong, T. Y., Cheung, C. M., Larsen, M., Sharma, S., Simó, R., & Diabetic Retinopathy Barometer 

Study Group. (2016). Diabetic retinopathy. Nature Reviews Disease Primers, 2(1), 1–17. 

World Health Organization. (2016). Global report on diabetes. Geneva, Switzerland: Author. 

Yau, J. W., Rogers, S. L., Kawasaki, R., Lamoureux, E. L., Kowalski, J. W., Bek, T., & Wang, J. J. 

(2012). Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care, 35(3), 

556–564. 

Yau, L., et al. (2012). Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care, 

35(3), 556–564. 

Yoon, S., Kim, J., & Park, S. (2016). Pathophysiology and therapeutic mechanisms in diabetic 

retinopathy: Current understanding and future prospects. Journal of Diabetes Research, 

3789217. 

Zhang, X., Saaddine, J. B., Chou, C. F., & Cotch, M. F. (2010). Prevalence of diabetic retinopathy in 

the United States, 2005–2008. JAMA, 304(6), 649–656. 

 

 

 

 

 

 



Fivezero 
    

 

44 

EXTENDED ABSTRACT 

Introduction: Early detection and effective monitoring of vision-threatening diseases such as diabetic 

retinopathy and glaucoma are critical in preventing irreversible vision loss and improving long-term patient 

outcomes. These conditions, if diagnosed in the early stages, can be managed with appropriate interventions, 

thereby reducing the burden on healthcare systems and enhancing patients' quality of life. In this context, artificial 

intelligence and deep learning technologies offer promising opportunities to support ophthalmologists in 

diagnostic decision-making processes. This study introduces a user-friendly diagnostic software interface 

integrated with a customized Convolutional Neural Network (CNN) architecture designed to aid in the 

identification of diabetic retinopathy and glaucoma from retinal fundus images. 

Method: An 11-layer CNN model was developed, starting with a rescaling input layer and employing 

various data augmentation techniques to improve generalization. The core of the model consists of three 

convolutional layers with 16, 32, and 64 filters, respectively, each followed by max-pooling operations. A dropout 

layer with a rate of 0.7 was integrated to mitigate overfitting. The feature extraction phase includes a flattening 

layer and a dense layer with 128 neurons, followed by an output layer tailored to the classification tasks. For 

glaucoma detection, a targeted preprocessing step focused on the optic disc region led to a 20% reduction in 

validation loss. Additionally, a manual zooming function was incorporated into the user interface to support expert 

analysis in diagnostically ambiguous glaucoma cases. For diabetic retinopathy, the model emphasized pathological 

regions such as edema and hemorrhage to enhance vascular structure visibility and improve diagnostic precision. 

Findings: The proposed system achieved an accuracy of 98% for diabetic retinopathy detection and 85% 

for glaucoma diagnosis. The results show that the CNN model is highly effective in identifying characteristic 

features of both diseases. The targeted preprocessing strategies and manual interface functionalities contributed 

significantly to diagnostic performance, particularly in glaucoma cases where optic nerve damage can be subtle. 

The software also provides real-time visualization of critical pathological areas, which supports clinical decision-

making. 

Conclusion: This study demonstrates that the integration of deep learning algorithms with user-centric 

interface design can significantly improve the early detection and management of diabetic retinopathy and 

glaucoma. The developed system not only provides high diagnostic accuracy but also enhances interpretability 

through morphological region highlighting, thereby supporting clinicians in delivering timely and precise 

treatment. The findings suggest that such tools could play a vital role in the future of AI-assisted ophthalmic 

diagnostics, ultimately improving patient outcomes and reducing preventable vision loss. 


